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DETECTION OF FLOW-FIELD INSTABILITY I N  THE PRESENCE 

O F  BUFFETING BY THE PARTIAL-MODE 

MODEL TECHNIQUE 

By Henry A. Cole, Jr., Robert C.  Robinson, 
and Bruno J. Gambucci 

Ames Research Center 
Moffett Field,  C a l i f .  

SUMMARY 

The partial-mode model technique f o r  studying buffet ing response of 
launch vehicles i s  extended t o  include motion with two node l i n e s  i n  an appl i -  
cat ion t o  Apollo/Saturn launch vehicles.  The r e s u l t s  obtained from f r e e -  
o s c i l l a t i o n  records a re  s tudied through several  s tages  of data  refinement 
including r m s ,  peak values of spec t r a l  density,  and band width of the spec t r a l  
density.  For the example shown, two unstable flow f i e l d s  a re  indicated,  one 
a t  a subsonic Mach number and another a t  a supersonic Mach number. 

INTRODUCTION 

I n  the predict ion of the dynamic response of a rocket launch vehicle t o  
buffet ing,  i t  was shown i n  reference 1 t h a t  consideration should be given not 
only t o  the buffet ing force input but a l so  t o  the s t a b i l i t y  of the aerodynamic 
flow f i e l d .  Although i n  pr inc ip le  i t  i s  possible t o  include the f low-field 
s t a b i l i t y  e f f e c t s  i n  buffet ing calculat ions,  the uncer ta in t ies  involved i n  
estimating these e f f e c t s  are  la rge .  Consequently, determining the s t a b i l i t y  
of the various separated flow f i e l d s  on the vehicle i s  an important p a r t  of 
the buffet ing problem. 

The s t a b i l i t y  of a la rge  number of nose configurations has been inves t i -  
gated by the partial-mode model technique described i n  references 1 and 2 and, 
from these r e s u l t s ,  a s i m i l a r i t y  parameter has been developed ( r e f .  3) f o r  
evaluating aerodynamic s t a b i l i t y .  Unfortunately, these r e s u l t s  are  l imi t ed  t o  
configurations f o r  which the separated flow i s  confined t o  the region forward 
of the f irst  node l i n e .  Configurations with more extensive separated flow 
s t i l l  require wind-tunnel t e s t ing .  One such study i n  which the separated flow 
extended back t o  the second node l i n e  has been conducted a t  the Ames Research 
Center i n  con junction with the development of Apollo/Saturn launch vehicles 
( r e f .  4 ) .  The purpose of the present repor t  i s  t o  describe the extensions i n  
the partial-mode model technique which were made t o  include motion back t o  the 
second node l i n e  and t o  ind ica te  the information which can be obtained through 
analysis  of f r ee -osc i l l a t ion  records. 



PARTIAL -MODE MODEL TECmQUE 

I n  the partial-mode model technique a s ingle  s t r u c t u r a l  mode i s  se lec ted  
f o r  study and only the motion of the p a r t  of the mode which f a l l s  within the 
separated flow region i s  simulated. This procedure together with l ightweight 
construction results i n  a very low generalized mass which amplifies the e f fec t  
of motion sens i t ive  aerodynamic forces  i n  the area of i n t e r e s t .  Consequently, 
these forces  can be measured more accurately with the partial-mode model than 
with the t rue  sca le  model. For t h i s  reason, the partial-mode technique i s  
pa r t i cu la r ly  usefu l  i n  detect ing the s t a b i l i t y  of loca l ized  separated flow 
f i e l d s  and the e f f e c t s  of l o c a l  geometric changes ( refs .  1, 2, and 5 ) .  

I n  the case of the Apollo/Saturn vehicle,  the second bending mode w a s  
se lec ted  f o r  study because i t  had the lowest product of generalized m a s s  and 
na tura l  frequency and the buffet ing generalized force inputs were estimated t o  
be la rge  i n  regions of the antinodes. The separated flow area of i n t e r e s t  w a s  
the nose sect ion forward of the second node l i n e  as indicated i n  f igure  1. 
Since previous appl icat ions of the technique included only areas forward of 
the f i rs t  node l i n e ,  the spec ia l  mechanical device shown i n  f igure  2 w a s  
devised t o  achieve the desired motion. The in t e rna l  mechanism, consis t ing of 
beams connected by f lexures ,  def lec ts  i n  such a way as t o  cause the escape 
rocket tower t o  ro t a t e  i n  a d i rec t ion  opposite t o  the main body. The moment 
arms of the in t e rna l  beams were se lec ted  t o  place the node l i n e  a t  the desired 
locat ion.  V i e w s  of the in t e rna l  mchanism, the ex terna l  matching points,  and 
the rear body cross f lexures  are shown i n  f igures  3, 4, and 5, respectively.  
The holes on these pa r t s  indicate  e f f o r t s  t o  l i gh ten  the generalized mass. 

The body she l l s  on the models were made with sandwich construction i n  
order t o  achieve r i g i d i t y  and l igh tness .  The inner cy l indr ica l  s h e l l  w a s  made 
with three layers  of 0.004 g lass  f i b e r  c lo th  over the forward half  and four  
layers  over the remainder. The f i l l e r  consisted of donut-shaped sect ions cut 
from a 2 lb/cu f t  polyurethane foam log.  
l aye r s  of glass  f i b e r  cloth.  Polyester res in ,  used as a bonding agent 
throughout, w a s  applied sparingly.  
e t e r  aluminum tubing bonded with an epoxy r e s i n  containing an aluminum f i l l e r .  
On assembly, the model mounting r ings were bonded t o  the inner cy l indr ica l  
s h e l l  with 828 epoxy res in .  

The outer l aye r  consisted of two 

The tower w a s  b u i l t  with 3/16-inch diam- 

During the course of the wind-tunnel tests, the tower configuration on 
the fu l l - sca le  vehicle w a s  changed, which i s  the reason f o r  the difference 
between the transonic and supersonic models. The completed transonic model 
which w a s  66 inches long weighed 7.63 pounds and the supersonic model which 
w a s  68 inches long weighed 8.5 pounds. This included a l l  components attached 
t o  the body before i n s t a l l a t i o n  on the in t e rna l  mechanism. The weight of the 
moving in t e rna l  mechanisms w a s  1 .96 pounds. The completed transonic model i s  
shown mounted i n  the Ames 14-Foot Transonic Wind Tunnel i n  f igure  6. 
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TEST EQUIPMENT 

The data  from a Mach number of 0.70 t o  1.16 were obtained i n  the Ames 
14-Foot Transonic Wind Tunnel, a t  Reynolds numbers from 3.8~10~ t o  4 . 3 ~ 1 0 ~ .  
The da ta  from a Mach number of 1 .5  t o  2.5 were obtained i n  the Arnes 9- by 
7-Foot Supersonic Wind Tunnel a t  Reynolds numbers between 2.1X1O6 and 2 . 4 ~ 1 0 ~ .  
Both wind tunnels have sting-type model supports mounted on s t r u t s  which span 
the tunnels a f t  of the t e s t  sections.  

The models were instrumented with strain-gage bridges mounted on the 
resonant spr ing shown i n  f igure  3. These gages were powered by 20 kc c a r r i e r  
current  amplifiers.  Direct current  components were eliminated from demodula- 
t e d  data  s igna ls  by high pass f i l t e r s  before being recorded on magnetic tape.  
The at tenuat ion due t o  f i l t e r i n g  was negl igible  above 10 cycles per second. 
To ca l ib ra t e  the s t r a i n  gages, f i l t e r s  were bypassed, s t a t i c  loads were 
imposed on the model, and the def lect ions were measured with d i a l  gages while 
the strain-gage output was read from a d i g i t a l  voltmeter. Before each wind- 
tunnel t e s t ,  an ac reference s igna l  of known voltage and frequency was 
recorded. 

The frequency response of the model, mounted i n  the wind tunnel, w a s  
obtained by driving the model a t  d iscre te  frequencies with an electromagnetic 
shaker. Input t o  the shaker w a s  sinusoidal.  Figure 7 shows the setup f o r  
measuring wind-off frequency response. The force input  t o  the model was 
obtained from the force gage and the model response from a strain-gage bridge 
mounted on the resonant spring. Amplitude r a t i o  and phase angle of the input  
and output s igna ls  were computed by a frequency response analyzer which has 
tracking f i l t e r s  ( a t  the input)  t h a t  pass only a narrow band of frequencies 
centered a t  the dr iving frequency. 

Analysis of the recorded data  consisted of measurement of the over -a l l  
rms, the spec t r a l  density,  and the s t a t i s t i c a l  d i s t r ibu t ion  of amplitude f o r  
each record. The rms of def lec t ion  and moment w a s  obtained by applying the 
s t a t i c  ca l ib ra t ion  f ac to r s  t o  the rms voltage as read from a t rue  r m s  meter. 
Spec t ra l  analysis  w a s  done with a heterodyne type analyzer i n  which an o s c i l -  
l a t o r  swept through the frequency range. The band width of the f i l t e r  used 
i n  the analysis  was 1.7 cycles per second. 

The s t a t i s t i c a l  analysis  w a s  done on a hybrid digi ta l -analog computer. 
Reference 6 describes t h i s  equipment and i t s  operation. 

MEASUmD RESPONSE 

To determine the aerodynamic flow e f fec t s ,  the dynamic cha rac t e r i s t i c s  
of the model were measured with the wind off  and on. With wind o f f ,  the model 
w a s  driven by an electrodynamic shaker as shown i n  f igure  7 ,  and with wind on, 
by the buffet ing forces .  This sec t ion  w i l l  describe the various measurements 
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which were made and i n t e r p r e t  the results through severa l  s tages  of data  
analysis ,  the rms, spec t r a l  density,  spec t r a l  densi ty  peaks, and, f i n a l l y ,  
band width of the model-mode spec t r a l  peak. 

Wind Off 

S t a t i c  and dynamic def lec t ion  measurements f o r  the two models are  shown 
i n  f igures  8 and 9. 
evident on the s t a t i c  def lec t ion  measurements. A t  zero frequency, there  i s  
considerable s t i n g  def lect ion,  bu t  at, the model design frequency the impedance 
of the s t i n g  reduces the def lec t ion  t o  negl igible  values and the nodal point  
on the model i s  a t  the desired locat ion.  

The a r t i c u l a t i n g  motion of the i n t e r n a l  mechanism i s  

Frequency responses of the two models a re  shown i n  f igures  10 and 11 
where M i  and M, are the input and output moments. The values have been 
corrected f o r  i n e r t i a  of the attachment f i t t i n g s .  The theo re t i ca l  s ing le-  
degree-of-freedom curve i s  shown on the f igu res  f o r  comparison. Deviations 
from t h i s  curve are  caused by extraneous modes, some of which a re  i d e n t i f i e d  
i n  the f igures .  However, i t  may be seen t h a t  the p r inc ipa l  peak occurs a t  
the model mode frequency and, hence, the exper imnt  i s  w e l l  conditioned. 

Wind On 

The primary purpose of the t e s t s  was t o  determine the e f f e c t  of flow- 
f i e l d  i n s t a b i l i t y  on the buf fe t ing  of the launch vehicle.  A washer was 
placed a t  the base of the escape rocket t o  a l t e r  the flow f i e l d .  Configura- 
t ions  with and without the washer a re  shown i n  f igures  6 and 7, respect ively.  
The response was measured with each configuration i n  both subsonic and super- 
sonic flow. Some typ ica l  time h i s t o r i e s  of strain-gage output (measured on 
resonant spring) are shown i n  f igures  12  and 13, which, i t  may be noted, vary 
from responses containing many frequencies t o  responses containing predomi- 
nantly the model frequency. 

Root mean square.- The t i m e  h i s t o r i e s  were reduced t o  rms form t o  give 
an over -a l l  p ic ture  of the response which could be used t o  ind ica te  the con- 
d i t ions  where more re f ined  analysis  might prove f r u i t f u l .  The rms rneasure- 
ment included the e f f e c t s  of extraneous modes as w e l l  as the mode of i n t e r e s t  
and, hence, can only be used f o r  qua l i t a t ive  purposes. 

The root  mean square of the pitching-moment coef f ic ien t  with and without 
the washer i s  p lo t t ed  i n  f igure  1 4  versus Mach number a t  zero angle of a t t ack  
(a = Oo). The following de f in i t i on  was used: 
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where 

0, angular displacement a t  base of model 

K model spring constant 

9 dynamic pressure 

S area of model base 

d diameter of model base, 14  i n .  

It may be seen t h a t  the washer causes a considerable r i s e  i n  the  response both 
subsonically and supersonically.  Furthermore, the coef f ic ien ts  show a r i s i n g  
t rend a$ supersonic Mach numbers. 

Since f o r  a launch t r a j ec to ry  the dynamic pressure decreases above a 
Mach number of about 1.5, the  angular motion of the  model was calculated for 
dynamic pressures corresponding t o  the dynamic pressure of a typ ica l  t r a j e c -  
tory.  The r e s u l t s  a re  shown i n  f igure  1 5  f o r  severa l  angles of a t tack.  The 
drop of f  i n  dynamic pressure tends t o  compensate f o r  the r i s e  i n  the pi tching-  
moment coef f ic ien t  and the curves are  r e l a t i v e l y  f l a t  i n  the supersonic 
region. Again i t  may be seen t h a t  the washer caused a considerable r i s e  i n  
response f o r  a l l  conditions. 

Examination of f igure  15 reveals  an important point.  A s  angle of a t t ack  
i s  increased. the resDonse increases  a t  subsonic Mach numbers whereas it , -  .L 

decreases a t  supersonic Mach nwcibers. This e f f e c t  could be caused by e i t h e r  
a reversa l  i n  t rend of the buffet ing input  o r  the aerodynamic damping. Since 
the rms does not d i s t inguish  between these two e f f e c t s ,  i t  i s  necessary t o  
r e f e r  t o  spec t r a l  dens i t ies  f o r  fu r the r  Information. 

Spectral  dens i t ies .  - The spec t r a l  densi ty  shows the frequency d i s t r ibu -  
t i o n  of the mean-square value of the time h i s to ry  and, hence, i s  use fu l  f o r  
obtaining quant i ta t ive  r e s u l t s  concerning the generalized buffet ing input and 
aerodynamic damping of the mode of i n t e r e s t .  Since spec t r a l  densi ty  informa- 
t i o n  i s  much more d i f f i c u l t  t o  obtain than the rms, the qua l i t a t ive  r e s u l t s  
obtained from the rms study were used t o  s e l e c t  the time h i s t o r i e s  on which 
spec t r a l  analyses were made. 

So= of the spec t r a l  dens i t i e s  calculated f o r  the two models a re  shown 
i n  f igure  16. Although it  i s  intended t h a t  the partial-mode model r e s t r i c t  
motion t o  a s ingle  degree of freedom, other  modes a re  always present.  When 
the response of the extraneous modes becomes l a rge  relative t o  the mode of 
i n t e r e s t ,  the r e s u l t s  become questionable because of possible  nonl inear i t ies  
i n  the aerodynamic forces.  
l a rge  peak which occurs near 30 cps i s  associated with the s t i n g  first- 
bending mode. The rise i n  

response of t h i s  mode. I n  f igu re  16 (b ) ,  the sharp peak near 44 cps f o r  the 
washer-on configuration w a s  due t o  a v io len t  shaking of the tower at a Mach 
number of 1.16 which only occurred a t  t h i s  one condition. 

One such condition i s  shown i n  f igure  16(a).  The 

i n  f igure  14 a t  0.8 Mach number i s  due t o  c" 

For a l l  o ther  
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subsonic t e s t  conditions, the predominant response was i n  the desired mode. 
Several  examples of spec t r a l  dens i t i e s  measured with the supersonic model are 
shown i n  f igures  1 6 ( ~ )  through ( f ) .  It may be noted t h a t  the dominant peak 
occurs i n  the mode of i n t e r e s t  near 94 cps. 

Since the height of the spec t r a l  peak a t  the frequency of mode of 
i n t e r e s t  ind ica tes  the combined e f f e c t  of aerodynamic damping and generalized 
force input,  a study was made of the peak values as  shown i n  f igures  17 and 
18. 
i s  shown f o r  severa l  subsonic and supersonic Mach numbers. Subsonically, the 
spec t r a l  density peaks tend t o  be lowest a t  Oo angle of a t t ack  and r i s e  as 
angle of a t t ack  i s  increased. M = 0.80 and 2' 
angle of a t t ack  shows an exceptionally high rise indica t ing  the p o s s i b i l i t y  of  
unstable aerodynamic damping. Supersonically, the highest  spec t r a l  densi ty  
peaks occur near 0' angle of a t tack .  Since the p o s s i b i l i t y  of unstable aero- 
dynamic damping near Oo angle of a t t ack  i s  indicated f o r  three points,  the 
var ia t ion  with Mach number was invest igated as  shown i n  f igure  18. The la rge  
e f f e c t  of the washer on the mode o f  i n t e r e s t  a t  supersonic Mach numbers i s  
apparent here. The r i s i n g  t rend  of the washer-on value near a Mach number of 
1 . 5  i s  pa r t i cu la r ly  in t e re s t ing  since t h i s  i s  near maximum dynamic pressure i n  
the launch t ra jec tory .  

I n  f igure  17, the e f f e c t  of angle of a t t ack  with and without the washer 

The point  f o r  washer on a t  

dasher - off  

3.5 - 4 
4 - 7  
4 - 7  
5-10 
3 - 5  
4 - 6  

5.5 - 8 
- 

A s  mentioned before, the height of the spec t r a l  densi ty  peak i s  deter-  
mined by the generalized buffet ing force input as well as the aerodynamic 
damping. The band width, on the other  hand, i s  determined mainly by the aero- 
dynamic damping. Hence, a study of the band widths of the mode of  i n t e r e s t  
w a s  made a t  points where spec t r a l  peaks indicated possible unstable aerody- 
namic conditions. Figure 19 shows the amplitude spec t r a l  densi ty  a t  M = 1 . 5 1  
a t  Oo angle of a t tack .  
of the peak amplitude. The value of 2.25 cps i s  l e s s  than the wind-off value 
of 3.5 cps i n  f igure  11 and, hence, ind ica tes  unstable aerodynamic damping. 
The curve f o r  4' angle of a t t ack  i s  a l so  shown on the f igure  f o r  comparison, 
and it  may be seen t h a t  the increase i n  angle o f  a t t ack  s t a b i l i z e s  the aero- 
dynamic damping. It may a l so  be noted t h a t  the frequency of the peak value 
var ies  i n  a manner t h a t  suggests a nonlinear pi tching moment curve s imilar  t o  
the one reported i n  reference 1. 

The band width was measured a t  an amplitude of 0.707 

Washer on 

3.5 - 4 
2 - 2-112: 
6 - io 
6 - 8  
3 - 4.5 
4 - 7  
5 - 10 
- _ _  

Similar s tud ies  of band width were conducted f o r  other  conditions and 
r e s u l t s  are given i n  the following table:  

.. - - -  _ -  - - 

I 

3.5 - 4 
5 - 7  

1.5 - 3.5" 
395 - 5.5 

7 - 8  
12 - 1 5  

Supersonic model 

0 
1 .5  
1.5 
1.5 
2.5 
2.5 
2.5 

- -- 

Subsonic model 

Mach Angle of 
number a t t ack  j 1.16 1.16 

Band 
Washer of f  

~~ 

3.5 - 4 
4 - 6  
4 - 6  

5 - 7  
5 - 7  

--- 

L - 

- 

Angle of  
a t t ack  

- -  . 
- --  
0 
2 
4 
0 
2 
4 

- _~. ~ 

"Unstable aerodynamic damping indicated.  
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It may be seen from the tab le  that unstable aerodynamic damping i s  a l s o  ind i -  
cated f o r  the washer-on configuration a t  
CL = Oo, both the washer-off and washer-on configurations appear t o  be near 
neut ra l  s t a b i l i t y .  The range of values i n  the tab le  r e f l e c t s  uncer ta in t ies  i n  
the measurements. 

M = 0.8, a = 2'. A t  M = 2.5, 

Probabi l i ty  dis t r ibut ions.-  I n  order t o  provide information on absolute 
values which occurred during the buffet ing tes ts ,  a study w a s  made of the d is -  
t r i bu t ion  of points  on the t i m e  h i s t o r i e s  ( ref .  6) .  Equal samples were taken 
from each condition. The results shown i n  f igure  20 indicate  t h a t  the data  
follow the normal d i s t r ibu t ion  up t o  about three times the r m s  and then f a l l  
below. On the bas i s  of results from reference 1, the  peak values would be 
expected t o  follow the Rayleigh d i s t r ibu t ion  and s imi la r ly  drop o f f  above 
three t i m e s  the r m s .  

CONCLUSIONS 

From subsonic and supersonic wind-tunnel tests of a partial-mode model i n  
which motion was represented back t o  the second node l i n e ,  i t  has been deter-  
mined t h a t  s ign i f i can t  measurements of motion-sensitive aerodynamic forces  can 
be made. The pr inc ipa l  response i n  most cases w a s  i n  the mode of i n t e r e s t  and 
e f f e c t s  of l o c a l  configuration changes were discernible  as follows: 

1. Placing a washer a t  the base of the escape rocket causes an  
unstable aerodynamic flow f i e l d  near a Mach number of 1 . 5  
a t  0' angle of a t t ack  and also near a Mach number of 0.8 
a t  2' angle of a t tack .  

2. The experimental points follow a normal probabi l i ty  d i s t r i -  
bution up t o  three t i m e s  t he  rms and then f a l l  below at higher 
values . 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  Nov. 25, 1964 
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Figure 1.- Approximation of t h e  second bending mode. 
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Figure 2 . -  Schematic drawing of t h e  model. 



Figure 3. - V i e w  of i n t e r n a l  mechanism. A-29457.1 



A-29459.1 Figure 4. - V i e w  of t o w e r .  



A-28460.1 
Figure 5 . -  View of rear  flexures.  



Figure 6.- Transonic model mounted in Ames 14-Foot Transonic Wind Tunr A-29458 
?l. 



A-32326.1 Figure 7. - Shaker in s t a l l a t ion  used i n  wind-off frequency response tests. 
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Figure 8. - Measured deflections on transonic model. 
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Figure 9. - Measured deflections on supersonic model. 
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Figure 10.-  Frequency response of t ransonic  model. 
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Figure 11. - Frequency response of supersonic model. 
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Figure 1 3 . -  Sample time h is tor ies  a t  a Mach number of 2 .50.  
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Figure 15 . -  Root-mean-square angular motion of model base corrected t o  f l i g h t  dynamic pressure. 
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